Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(8): e23106, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498234

RESUMO

The axon guidance proteins, Roundabout (Robo) receptors play a critical role in morphogenesis of the islets of Langerhans. Mice with a ß cell-selective deletion of Robo (Robo ßKO), show severely disrupted spatial architecture of their islets, without defects in ß cell differentiation or maturity. We have recently shown that Robo ßKO mice have reduced synchronous glucose-stimulated ß cell calcium oscillations in their islets in vivo, likely disrupting their pulsatile insulin secretion. Here, we analyze whole-body metabolic regulation in Robo ßKO mice. We show that Robo ßKO mice have mild defects in glucose homeostasis, and altered glucagon and insulin secretion. However, we did not observe any severe whole-body glucoregulatory phenotype following the disruption of islet architecture in Robo ßKO. Our data suggest that islet architecture plays only a mild role in overall glucoregulation.


Assuntos
Glucagon , Ilhotas Pancreáticas , Animais , Camundongos , Glucagon/metabolismo , Secreção de Insulina , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Homeostase
2.
Diabetes ; 70(9): 2058-2066, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34417264

RESUMO

Loss of mature ß-cell function and identity, or ß-cell dedifferentiation, is seen in both type 1 and type 2 diabetes. Two competing models explain ß-cell dedifferentiation in diabetes. In the first model, ß-cells dedifferentiate in the reverse order of their developmental ontogeny. This model predicts that dedifferentiated ß-cells resemble ß-cell progenitors. In the second model, ß-cell dedifferentiation depends on the type of diabetogenic stress. This model, which we call the "Anna Karenina" model, predicts that in each type of diabetes, ß-cells dedifferentiate in their own way, depending on how their mature identity is disrupted by any particular diabetogenic stress. We directly tested the two models using a ß-cell-specific lineage-tracing system coupled with RNA sequencing in mice. We constructed a multidimensional map of ß-cell transcriptional trajectories during the normal course of ß-cell postnatal development and during their dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR-Lepob/ob ). Using this unbiased approach, we show here that despite some similarities between immature and dedifferentiated ß-cells, ß-cell dedifferentiation in the two mouse models is not a reversal of developmental ontogeny and is different between different types of diabetes.


Assuntos
Desdiferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Animais , Linhagem da Célula/fisiologia , Camundongos
3.
Elife ; 102021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231467

RESUMO

The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among ß cells, yet testing this in vivo in the intact pancreas is challenging. Robo ßKO mice, in which the genes Robo1 and Robo2 are deleted selectively in ß cells, provide a unique model of altered islet spatial architecture without loss of ß cell differentiation or islet damage from diabetes. Combining Robo ßKO mice with intravital microscopy, we show here that Robo ßKO islets have reduced synchronized intra-islet Ca2+ oscillations among ß cells in vivo. We provide evidence that this loss is not due to a ß cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.


Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo , Animais , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Proteína delta-2 de Junções Comunicantes , Proteínas Roundabout
4.
Front Microbiol ; 7: 852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375574

RESUMO

Diversity-generating retroelements (DGRs) are genetic cassettes that can produce massive protein sequence variation in prokaryotes. Presumably DGRs confer selective advantages to their hosts (bacteria or viruses) by generating variants of target genes-typically resulting in target proteins with altered ligand-binding specificity-through a specialized error-prone reverse transcription process. The only extensively studied DGR system is from the Bordetella phage BPP-1, although DGRs are predicted to exist in other species. Using bioinformatics analysis, we discovered that the DGR system associated with the Treponema denticola species (a human oral-associated periopathogen) is dynamic (with gains/losses of the system found in the isolates) and diverse (with multiple types found in isolated genomes and the human microbiota). The T. denticola DGR is found in only nine of the 17 sequenced T. denticola strains. Analysis of the DGR-associated template regions and reverse transcriptase gene sequences revealed two types of DGR systems in T. denticola: the ATCC35405-type shared by seven isolates including ATCC35405; and the SP32-type shared by two isolates (SP32 and SP33), suggesting multiple DGR acquisitions. We detected additional variants of the T. denticola DGR systems in the human microbiomes, and found that the SP32-type DGR is more abundant than the ATCC35405-type in the healthy human oral microbiome, although the latter is found in more sequenced isolates. This is the first comprehensive study to characterize the DGRs associated with T. denticola in individual genomes as well as human microbiomes, demonstrating the importance of utilizing both individual genomes and metagenomes for characterizing the elements, and for analyzing their diversity and distribution in human populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...